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Abstract
Coherent state theory is shown to reproduce three categories of representations
of the spectrum generating algebra for an algebraic model: (i) classical
realizations which are the starting point for geometric quantization, (ii) induced
unitary representations corresponding to prequantization and (iii) irreducible
unitary representations obtained in geometric quantization by choice of a
polarization. These representations establish an intimate relation between
coherent state theory and geometric quantization in the context of induced
representations.

PACS numbers: 03.65.Fd, 02.20.−a, 04.60.Ds

1. Introduction

The process of quantizing a classical system has been of interest since the early days of quantum
mechanics and remains an active field of research. The most sophisticated quantization
procedure is provided by geometric quantization (GQ). This procedure, founded on Kirillov’s
so-called orbit method [1], was initiated by Kostant [2], and Souriau [3], who extended the orbit
method by capitalizing on the physical insights that come from its applications to quantum
mechanics. Thus geometric quantization incorporates ideas that physicists have used for many
years, but provides new avenues to address quantization of more difficult systems.

Our primary concern in this paper is the significance of GQ for the representation theory of
Lie groups and Lie algebras. Its relevance to representation theory is based on the observation
that quantizing a model with a spectrum generating algebra (SGA), defined in the following
section, is equivalent to constructing an appropriate irreducible unitary representation of that
algebra [4]. Conversely, as brought to light by GQ, the construction of a unitary irrep of a
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Lie group or algebra is often equivalent to quantizing some classical Hamiltonian system.
Thus, the theory of induced representations plays a central role in the quantization of a
model and in quantum mechanics in general, as emphasized by Mackey [5]. Establishing an
explicit correspondence between induced representation theory and GQ sheds new light on
both theories.

The theory of induced representations is viewed in this paper from the perspective of
coherent state theory [6–9], which incorporates other inducing constructions in terms of
structures and concepts that relate naturally to quantum mechanics and GQ. It is shown that
coherent state theory reproduces three categories of representations of the SGA for an algebraic
model, and that these categories are related to the structures in geometric quantization. First,
there are classical realizations of the SGA as functions on a phase space; GQ begins with
such a classical realization. The coherent state construction also yields the induced unitary
(reducible) representations that correspond to prequantization. Finally, the unitary irreducible
representations, corresponding to full quantization, are obtained through means related to the
choice of a polarization in GQ. These techniques are illustrated by a variety of examples.

A relationship between coherent state theory and geometric quantization follows naturally
from the problem that gave rise to coherent state representations; namely, ‘construct an
irreducible unitary representation of a group from the properties of a set of coherent states’
[8, 10]. As will be shown in the following, the expectation values of the Lie algebra over
a set of coherent states give a classical representation of the Lie algebra. Thus, regaining
a unitary irrep is equivalent to quantization of this classical representation. It is found that
reconstructing the irrep is possible in coherent state theory only for particular orbits which give
rise to the classical representations that are described as quantizable in geometric quantization.

It is the principal aim of this paper to show that coherent state methods provide an intuitive
and practical framework for implementing the procedures of induced representations and
geometric quantization. We thereby attempt to make these fundamental theories accessible
to a wider community. The illustrative examples presented here are intentionally simple.
However, it is noted that all three theories have been deployed in non-trivial ways. The
theory of induced representations has made seminal contributions in physics, e.g., to the
representation theory of the Poincaré group [11] and the space groups of crystals [12]; indeed,
it is central to representation theory and quantum mechanics [5]. Geometric quantization leads
to a deep understanding of the route from classical mechanics to quantum mechanics. It has
been used, for example, to develop theories of quantized vortices in hydrodynamics [13] and
nuclei [14] and to reproduce the irreducible unitary representations of compact Lie groups and
the holomorphic discrete series of reductive Lie groups [15]. Other applications can be found
in the book of Guillemin and Sternberg [16]. Similarly, coherent state theory has provided a
fundamental understanding of classical-like behaviour in quantum mechanics, e.g., in the field
of quantum optics [17]. It has also been used extensively [7], particularly in its vector coherent
state extension [18] (outlined in the following paper), in the quantization of numerous physical
models by explicit construction of the irreducible representations of their spectrum generating
algebras (cf [9] for a long list of references). Our hope is that the complementary aspects of
these powerful methods will result in their successful application to even more challenging
problems.

It has long been known [19] that there is a close relationship between the theories of
coherent states, induced representations and geometric quantization. Indeed, the Kirillov
method [1, 20, 21], from which geometric quantization emerged, was expressed as an inducing
construction. This relationship was used, for example, by Streater [22] to construct the
irreducible unitary representations of the semidirect product oscillator group, following both
the Mackey and Kirillov methods, and by Dunne [23] to construct the irreps of SO(2, 1).
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It is particularly well known that the coadjoint orbits of a Lie group play central roles in all
three theories (cf, for example, chapter 15 of Kirillov’s book [20]). The contribution of this
paper is to explore the detailed relationships between the theories so that their complementary
strengths may be better understood and more readily applied to problems in physics. Moreover,
by establishing detailed relationships, we hope to make it easier to move between the different
expressions of quantization and induced representations in the solution of complex problems.

With a relationship between scalar coherent state theory and GQ in place, the
generalization to vector coherent state theory [9, 18], in which irreps of an algebra are induced
from multidimensional irreps of a subalgebra, indicates new ways of applying geometric
quantization to models with intrinsic degrees of freedom. Conversely, the different perspective
of geometric quantization suggests possibilities for generalization of the theory of induced
representations. These issues will be discussed in the sequel paper.

2. Algebraic models

An algebraic model is defined below as a model with an SGA. The quantization of an algebraic
model and the construction of the irreducible unitary representations of its SGA are then related
problems. However, whereas quantization starts with the classical Hamiltonian dynamics on
a phase space, the theory of induced representations starts with the abstract SGA. These and
other concepts invoked in the two constructions are reviewed in this section.

2.1. Observables and spectrum generating algebras

In classical mechanics, observables are realized as smooth real-valued functions on a connected
phase space M, i.e. elements of C∞(M). They form an infinite-dimensional Lie algebra with
Lie product given by a Poisson bracket. In quantum mechanics, observables are interpreted
as Hermitian linear operators on a Hilbert space H; they are elements of GL(H) and form an
infinite-dimensional Lie algebra with Lie product given by commutation.

The algebrasC∞(M) andGL(H) for a given physical system are different [24]. However,
a simple relationship may be established between finite-dimensional subalgebras of C∞(M)

and GL(H). Thus, it is convenient to consider an abstract Lie algebra of observables g
that is real and finite dimensional and can be represented classically by a homomorphism
J : g → C∞(M) and quantum mechanically by a unitary representation T : g → GL(H).
Let A = J (A) and Â = T (A) denote classical and quantal representations, respectively, of
an element A ∈ g.

Then, if elements A, B and C ∈ g satisfy the commutation relations

[A,B] = ih̄C (1)

the corresponding linear operators and functions satisfy

[Â, B̂] = ih̄Ĉ (2)

and

{A,B} = C (3)

where { , } denotes the classical Poisson bracket4. (More precisely, the classical
homomorphism is given by A → ih̄A, so that {(ih̄A), (ih̄B)} = ih̄(ih̄C).)
4 Note that we follow the practice, common in quantum mechanics, of representing the infinitesimal generators of a
unitary group representation, which correspond to physical observables, by Hermitian operators. To regard the real
linear span of such operators as a real Lie algebra then requires inclusion of a factor i in the commutation relations.
The Poisson bracket needs no such factor.
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Let G ⊂ C∞(M) denote the classical algebra G = {J (A)|A ∈ g}. We shall describe the
algebra G (and hence the algebra g) as a spectrum generating algebra for the classical system
if the values of the observables in G are sufficient to uniquely specify a point in M and their
gradients span the tangent space of M at every point. (Other compatible definitions of an
SGA can be found in the literature [25]. For example, a classical SGA can be defined by
requiring that the only functions in C∞(M) that Poisson commute with all elements of G are
the constant functions [15].)

A finite-dimensional Lie algebra g is said to be an SGA for a quantal system if the Hilbert
space for the system carries an irreducible representation of g. However, to be useful, one
may also require that the Hamiltonian and other important observables of the system should
be simply expressible in terms of g, e.g., by belonging to its universal enveloping algebra.
Thus, in quantizing a classical model, we shall seek a quantal system with the same SGA as
the classical model. A model dynamical system that has a finite-dimensional SGA is said to
be an algebraic model.

2.2. Phase spaces as coadjoint orbits

Let G be a group of canonical transformations (i.e. symplectomorphisms) of a classical phase
space M for a model. Then, if G acts transitively on M, it is said to be a dynamical group for
the model. If an element g ∈ G sends a pointm ∈ M tom ·g ∈ M, then M is the group orbit

M = {m · g | g ∈ G} (4)

and diffeomorphic to the factor space Hm\G with isotropy subgroup

Hm = {h ∈ g | m · h = m}. (5)

A remarkable fact [2, 3] that will be used extensively in the following is that a phase space
with a dynamical group can be identified with a coadjoint orbit. Conversely, every coadjoint
orbit is a phase space. Moreover, the Lie algebra g of G is an SGA for the model. Note that in
quantum mechanics, one is often interested in projective representations of a given dynamical
group. Thus, we consider projective as well as true representations; in practice, it is often
simpler to choose a dynamical group that is simply connected so that all its representations
are true representations.

Recall [26] that G has a natural adjoint action on its Lie algebra g

Ad(g) : g → g A �→ A(g) = Ad(g)A (6)

where, for a matrix group, Ad(g)A = gAg−1. G also has a coadjoint action on the space g∗

of real-valued linear functionals on g (the dual of g). The action of an element ρ ∈ g∗ on an
element A ∈ g is given by the natural pairing of g and g∗, expressed as ρ(A) = Tr(ρA) for
matrices. The coadjoint action is then defined, for ρ ∈ g∗ and g ∈ G, by ρ → ρg , where

ρg(A) = ρ(A(g)) ∀A ∈ g. (7)

Thus, the coadjoint orbit

Oρ = {ρg | g ∈ G} (8)

is diffeomorphic to the factor space Hρ\G with isotropy subgroup Hρ = {h ∈ g | ρh = ρ}.
We shall refer to an element ρ of g∗ as a density. Now if a density ρ ∈ g∗ is chosen such that
Hρ = Hm then there is a diffeomorphism M → Oρ in which m �→ ρ and m · g �→ ρg . This
map is known as a moment map [2, 3, 26].

Such a moment map defines a classical representation J : g → G;A �→ A = J (A) of
the Lie algebra g as functions over the classical phase space M, defined by

A(m · g) = ρg(A) (9)
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with Poisson bracket given by

{A,B} = ω(A,B) (10)

where ω is the antisymmetric two-form5 with values at m · g ∈ M given by

ωm·g(A,B) = − i

h̄
ρg([A,B]) ∀A,B ∈ g. (11)

Thus, the moment map M → Oρ defines a symplectic form ω on Oρ . This form is known to
be non-degenerate and the map M → Om is a symplectomorphism.

2.3. Geometric quantization

Geometric quantization formalizes the ideas of Dirac [27] concerning the quantization of a
classical system. The idea is to replace the classical (Poisson bracket) algebra of functions on
a phase space by a unitary representation, i.e. map each classical observable (function) F to a
Hermitian operator F̂ such that if

{F1,F2} = F3 (12)

then

[F̂ 1, F̂ 2] = ih̄F̂ 3. (13)

There are some additional requirements of the Dirac map. First, all constant functions must
map to multiples of the identity operator Î . Second, the unitary representation should be
irreducible.

GQ solves the first part of the Dirac problem by a construction known as prequantization.
However, it is now known that there are generally no irreducible unitary representations of the
full algebra of observables [24]. Thus, a complete solution of the Dirac problem is impossible.
When there exists a finite-dimensional SGA for the model then, under certain quantizability
conditions, the restriction to the SGA of the representation given by prequantization becomes
fully reducible. Moreover, GQ gives a prescription for the reduction in terms of a polarization.
For details of the techniques of GQ, see Woodhouse [28].

It will be shown in the following that the reducible representation of an SGA given by
prequantization of a classical phase space diffeomorphic to Hρ\G integrates to the reducible
representation of G induced from a one-dimensional representation ofHρ in the standard theory
of induced representations. Likewise, the irreducible representations obtained by introducing
a polarization are obtainable by the coherent state inducing construction.

3. Scalar coherent state representations

In this section, we show how the coherent state construction reproduces the three categories
of representations of the SGA of an algebraic model: classical realizations, reducible unitary
representations corresponding to prequantization and irreducible unitary representations of a
full quantization.

Let G with Lie algebra g denote the dynamical group of an algebraic model and let T
denote an abstract (possibly projective) unitary representation of G on a Hilbert space H. There
is no need to make a precise specification of T. For example, if G has a right-invariant measure
dv(g), H could be the space L2(G) of square-integrable functions with respect to this measure
and T the regular representation. Or, for application to models of many-particle systems, H

might be the standard many-particle Hilbert space L2(R3N) of square-integrable functions
5 With the realization of the Lie algebra g as a set of invariant vector fields on M, ω becomes a two-form on M.
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of many-particle Cartesian coordinates and T a Weil [29] or Schrödinger representation (see
section 4.1).

For notational convenience we denote the representation T (A) of an element A ∈ g by
Â ≡ T (A).

3.1. Classical realizations of g

In section 2.2, the classical phase space for an algebraic model is shown to be expressible as
a coadjoint orbit. In this section, we show that these coadjoint orbits can be projected from
group orbits in the Hilbert space.

For any state |0〉 ∈ H of unit norm (i.e. 〈0|0〉 = 1) there is a system of coherent states [6]

{|g〉 = T (g−1)|0〉; g ∈ G} (14)

and a corresponding set of dual states

{〈g| = 〈0|T (g); g ∈ G}. (15)

Moreover, there is a natural identification of any state with a density, i.e. an element of the
dual algebra g∗. Thus, the coherent states define a system of densities

ρ(A) = 〈0|Â|0〉 (16)

ρg(A) = 〈g|Â|g〉 = 〈0|Â(g)|0〉 = ρ(A(g)) g ∈ G (17)

where

Â(g) = T (Ad(g)A) = T (g)ÂT (g−1) A ∈ g. (18)

It follows that the coherent states determine a coadjoint orbit

Oρ = {ρg; g ∈ G}. (19)

They also determine a map J from the Lie algebra g (cf section 2.2) to functions on Oρ in
which an element A ∈ g is mapped to a function A = J (A) with values

A(g) = 〈g|Â|g〉 = ρg(A). (20)

The map J is a classical representation of g. For, if [Â, B̂] = ih̄Ĉ, then the corresponding
functions A = J (A), B = J (B) and C = J (C) satisfy a Poisson bracket relationship defined
by

{A,B}(g) = − i

h̄
〈g|[Â, B̂]|g〉 = C(g). (21)

The Poisson bracket can be expressed in terms of local coordinates for Oρ as follows.
First observe that Oρ is diffeomorphic to the coset space Hρ\G, where

Hρ = {h ∈ G|ρh = ρ}. (22)

Then the Lie algebra hρ of the stability subgroupHρ is the set

hρ = {X ∈ g | ρ([X,A]) = 0,∀A ∈ g}. (23)

Thus, if {Ai} is a basis for hρ and {Aν} completes a basis for g, coordinates are defined for
elements of G about a point g ∈ G by setting

g(ξ, x) = exp

(
− i

h̄

∑
i

ξ iAi

)
exp

(
− i

h̄

∑
ν

xνAν

)
g. (24)
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It follows that at g = g(0, 0),

∂A(g)
∂ξ i

≡ ∂A(g(ξ, x))
∂ξ i

∣∣∣
ξ=x=0

= − i

h̄
〈0|[Âi, Â(g)]|0〉 = 0. (25)

However, the corresponding derivatives with respect to the {xν} coordinates do not, in general,
vanish. Thus, the set {xν} serves as local coordinates for Oρ ∼ Hρ\G. With respect to these
coordinates, we then define

(∂µA)(g) ≡ ∂A(g(ξ, x))
∂xµ

∣∣∣
ξ=x=0

=
∑
ν

ωµνA
ν(g) (26)

where Aν(g) is a coefficient in the expansion

A(g) =
∑
i

Ai(g)Ai +
∑
ν

Aν(g)Aν (27)

and

ωµν = − i

h̄
〈0|[Âµ, Âν ]|0〉. (28)

The Poisson bracket of equation (21) is then expressed in the familiar form

{A,B}(g) =
∑
µν

Aµ(g)ωµνB
ν(g) =

∑
µν

(∂µA)(g)ωµν(∂νB)(g) (29)

where the matrix (ωµν) is defined such that∑
ν

ωµνωλν = δ
µ
λ . (30)

In this form, the Poisson bracket can be extended to all C∞ functions on Oρ .
It will be noted that the above results are expressed in terms of a specific choice of the

basis elements {Aν} of the Lie algebra. Thus, it is important to ask if the results depend on the
choice. Two distinct kinds of transformations of the basis are possible:

Aν →
∑
µ

Aµγµν. (31)

and

Aν → Aν +
∑
i

Aiγiν . (32)

Combinations of the two kinds are also possible but it is instructive to consider them separately.
Transformations of the first kind leave the subspace of the Lie algebra spanned by the
elements {Aν} invariant. They generate normal coordinate transformations on Oρ . However,
all physical expressions, such as the values of observables and their Poisson brackets, are
manifestly covariant relative to such coordinate transformation. Transformations of the
second kind, corresponding to changes of the linear span of the {Aν} basis, are known as
gauge transformations. Because of the definition of the intrinsic subalgebra, the symplectic
form ω = ∑

µν ωµν dxµ dxν is seen to be invariant under a gauge transformation. Moreover,
from definition (26), it follows that

ih̄(∂νA)(g) = 〈0|[Âν, Â(g)]|0〉. (33)

Thus, it follows that (∂νA)(g) and hence the Poisson bracket are also gauge invariant.
Note that different classical representations result from different choices of the state |0〉,

even in the case when the representation T is irreducible.



5606 S D Bartlett et al

3.2. Induced representations

Given an abstract unitary representation T of the dynamical group G over a Hilbert space
H, a coherent state representation 	 is defined by the specification of a functional 〈ϕ| on a
G-invariant dense subspace HD ⊂ H. A state |ψ〉 ∈ HD then has coherent state wavefunction
ψ defined over G by

ψ(g) = 〈ϕ|T (g)|ψ〉 ∀g ∈ G. (34)

A Hilbert space H for a coherent state representation 	 is the completion of the space of such
coherent state wavefunctions with respect to the inner product

(ψ,ψ ′) = 〈ψ|ψ ′〉 (35)

where the inner product on the right is that of H. The coherent state representation 	 is then
defined by

[	(g)ψ](g′) = ψ(g′g). (36)

Clearly there are many coherent state representations depending on the choice of the functional
〈ϕ| and Hilbert space H. If the functional 〈ϕ| is chosen such that

ψ(hg) = 〈ϕ|T (h)T (g)|ψ〉 = χ(h)ψ(g) ∀h ∈ Hρ (37)

whereχ is a one-dimensional representation of the subgroupHρ ⊂ G, we say that the coherent
state representation 	 is induced from the representation χ of Hρ .

If G is compact, the space H of coherent state wavefunctions is contained in L2(G) and
	 is isomorphic to a subrepresentation of the regular representation [8] (this can be seen from
the inner product given in section 3.4). More generally, if 〈ϕ| is such that H consists of all
functions which satisfy equation (37) and whose absolute values are in L2(Hρ\G), then 	 is
said to be a standard (Mackey) induced representation [5]. In general, the representation 	
is highly reducible. It will be shown in section 3.3 that, by imposing extra conditions on the
choice of the functional 〈ϕ|, it is possible to proceed directly to the irreducible representations
of quantization.

The above coherent state wavefunctions are defined as functions over the group G.
However, in practical applications, it is generally more useful to represent them as functions
over a suitable set ofHρ\G coset representatives [8]. Recall that a set of coset representatives
K = {k(g) ∈ Hρg; g ∈ G} defines a unique factorization g = h(g)k(g), with h(g) ∈ Hρ , of
every g ∈ G. Hence, it follows from identity (37) that the restriction of ψ ∈ H to the subset
K ⊂ G is sufficient to uniquely defineψ . Often it is also convenient to consider factorizations
of the type g = h(g)k(g) with h(g) ∈ Hc

ρ and k(g) ∈ K , where K is a subset of Hc
ρ\Gc

coset representatives and Hc
ρ and Gc are the complex extensions of Hρ and G, respectively.

Note that identity (37) does not require that the wavefunctions are functions on Hρ\G; in
general, ψ need only be a section of a complex line bundle associated with the principal
bundle G → Hρ\G. The Hilbert space H, then, can be viewed as a space of sections of a
complex line bundle overHρ\G [30].

We now show that, if a representation 	 is induced from a representation χ ofHρ having
the property that

i
d

dt
χ(e−iAt )

∣∣∣
t=0

= χ(A) ≡ ρ(A) A ∈ hρ (38)

then the corresponding representation of the Lie algebra g, defined by

[	(A)ψ](g) = 〈ϕ|T (g)Â|ψ〉 = ψ(gA) A ∈ g (39)
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where

ψ(gA) = i
d

dt
ψ(g e−itA)

∣∣∣
t=0

(40)

is a subrepresentation of that given by prequantization. (Such a relationship was shown in
more restricted contexts, for example, by Dunne [23] and Rawnsley [19].)

Note, however, that for this prequantization to be possible, the representation χ of hρ
defined by ρ must be a subrepresentation of the restriction to hρ ⊂ g of some unitary
representation T of g. When this condition is satisfied, we say (in the language of geometric
quantization) that the classical representation of g defined by ρ is quantizable.

First observe that

ψ(gA) = ψ(A(g)g) (41)

where A(g) = Adg(A). Substitution of the identities

ψ(Aig) = χ(Ai)ψ(g) ψ(Aνg) = ih̄(∂νψ)(g) (42)

where

ih̄(∂νψ)(g) = ih̄
∂

∂xν
ψ

(
exp

(
− i

h̄

∑
ν

xνAν

)
g

) ∣∣∣∣∣
x=0

(43)

into expansion (27) of A(g), then gives the explicit expression

[	(A)ψ](g) =
∑
i

Ai(g)χ(Ai)ψ(g) + ih̄
∑
ν

Aν(g)(∂νψ)(g) (44)

for the action of 	(A) on coherent state wavefunctions.
Expression (44) of 	 depends on expansion (27) ofA(g). Thus it is coordinate dependent

and gauge dependent. However, it can be expressed in a covariant form by taking advantage of
the symplectic structure of the classical phase space. By expanding the classical representation
A(g) = ρ(A(g)) of A ∈ g,

A(g) =
∑
i

Ai(g)χ(Ai) +
∑
ν

Aν(g)ρ(Aν) (45)

equation (44) becomes

[	(A)ψ](g) = A(g)ψ(g) + ih̄
∑
ν

Aν(g)(∇νψ)(g) (46)

where

ih̄(∇νψ)(g) = ih̄(∂νψ)(g) − ρ(Aν)ψ(g). (47)

The first term, A(g)ψ(g), of equation (46) is manifestly covariant. Moreover, from the
definition, [	(A)ψ](g) = ψ(A(g)g), it follows that

ih̄
∑
ν

Aν(g)(∇νψ)(g) = ψ(A(g)g) − ρ(A(g))ψ(g). (48)

Thus, the second term is also covariant. We shall refer to the operator ∇XA = ∑
ν A

ν∇ν ,
defined such that

[∇XAψ](g) =
∑
ν

Aν(g)(∇νψ)(g) (49)

as a covariant derivative, in accordance with standard terminology. The induced representation
	(A) of an arbitrary element A ∈ g is then expressed in the covariant form

	(A) = A + ih̄∇XA . (50)

A similar expression can also be derived within the framework of Berezin quantization [19].
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It is shown in the appendix that, for a particular choice of gauge, ∇XA is expressible as a
sum

∇XA = XA +
i

h̄
θ(XA) (51)

whereXA is a Hamiltonian vector field defined by the classical function A and θ is a one-form
(gauge potential). It is also shown that the symplectic two-form ω of the manifold Oρ is the
exterior derivative

ω = dθ. (52)

Thus, θ is a symplectic potential for Oρ . Note that the values of the symplectic potential θ
depend on the choice of {Aν} (cf equation (24)). As a consequence, θ is only defined to within
a gauge transformation θ → θ + dα. However, its exterior derivative is gauge independent.

The coherent state representation 	 : A → A + ih̄∇XA is now observed to be
of the standard form of prequantization in the theory of geometric quantization. Thus,
prequantization of an algebraic model is equivalent to a standard (Mackey) representation
induced from a one-dimensional irrep of a suitable subgroup. However, depending on the
choice of functional 〈ϕ| and starting Hilbert space H, the Hilbert space H of a coherent state
representation may be an invariant subspace of that of prequantization. Indeed, as we show in
the following section, it is often possible to choose the functional 〈ϕ| such that the coherent
state representation is irreducible.

Geometric quantization shows that prequantization can be extended to the whole infinite-
dimensional classical algebra of all functions on the phase space. However, the extension
is not fully reducible and, as presently formulated, does not apply generally to an arbitrary
coherent state representation, i.e. a coherent state representation that is not equivalent to a
standard induced representation. The theory of induced representations also extends, albeit
in different ways. For example, it is possible to induce coherent state representations from a
representation of a subgroup H ⊂ G for which H\G is not symplectic. It is also possible to
induce representations that are not unitary. Some of the possibilities will be illustrated with
examples in section 4.

3.3. Irreducible representations

The full quantization of an algebraic model corresponds to the construction of an irreducible
unitary representation of its SGA. The usefulness of scalar coherent state induction, and indeed
the full VCS theory, resides in its facility to construct such representations in a practical
and computationally tractable manner. All that is needed is a functional 〈ϕ| that uniquely
characterizes an irrep. Such a functional can often be defined, for example, by extending
condition (37) to a suitable subgroup P in the chain Hρ ⊂ P ⊂ Gc, where Gc is the complex
extension of G. In making the extension from a real subgroupHρ ⊂ G to a complex subgroup
P ⊂ Gc, we recall that a similar extension [22, 23], applied to Kirillov’s orbit method, resulted
in a method for constructing certain irreducible representations for semisimple Lie groups.

In making this extension, a technical concern is that, whereas a representation of an SGA
g extends linearly to the complex extension gc of g, the corresponding extension of the generic
unitary representation T of the real group G may not converge for all of Gc. However, it is
sufficient for the purpose of defining an irreducible coherent state representation if the action
of T on some dense subspace HD ⊆ H can be extended to a suitable subset U(P) ⊂ P of
a subgroup P ⊂ Gc which contains Hρ . Let χ̃ denote a one-dimensional irrep of P ⊂ Gc

which restricts to a unitary irrep χ of Hρ ⊂ P . Now suppose a functional 〈ϕ| is chosen such
that

〈ϕ|T (z)T (g)|ψ〉 = χ̃(z)ψ(g) ∀z ∈ U(P). (53)
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It will be shown by examples in the following sections that, for many categories of groups,
there are natural choices of P and its representation χ̃ for which the corresponding coherent
state representation is irreducible.

Subgroups satisfying these conditions are familiar in the holomorphic induction of
irreducible representations [31]. For example, if G were semisimple and the isotropy subgroup
Hρ ⊂ G for the coadjoint orbitHρ\G, as defined above,were a Cartan subgroup, then a suitable
subgroup P ⊂ Gc would be the Borel subgroup generated by Hρ and the exponentials of a
set of raising (or lowering) operators. A suitable one-dimensional representation of P would
then be defined by a dominant integral highest weight for a unitary irrep of G. More generally,
if Hρ were a Levi subgroup, P would be parabolic. Non-unitary irreps can also be induced in
this way. However, they are not normally described as quantizations.

The construction outlined above is a generalization of holomorphic induction and, for
convenience, in this situation we will speak of ‘the representation of G induced from a
representation of a subgroup P ⊂ Gc’.

Apart from imposing the stronger condition (53), the coherent state construction is the
same as in section 3.2. However, the stronger condition restricts the set of coherent state
wavefunctions to a subset with the result that the coherent state representation becomes an
irreducible subrepresentation of that given by prequantization.

Now if a unitary coherent state representation 	 of a dynamical group G induced from
a representation χ̃ of a subgroup P ⊂ Gc defines an irreducible representation of the Lie
algebra g and if the representation χ̃ satisfies the equality

i
d

dt
χ̃(e−iAt )

∣∣∣
t=0

= χ̃(A) ≡ ρ(A) A ∈ p (54)

then we say that 	 is a quantization of the classical representation of g defined by ρ.
Note, however, that for this quantization to be possible the representation χ of h must

extend to a representation χ̃ of a subalgebra p ⊂ gc which is contained in a unique irrep of gc

which restricts to a unitary irrep of g.
In the theory of geometric quantization,one would say that the choice of subgroupP ⊂ Gc

defines an invariant polarization [2, 32]. Recall that a basis for hc\gc defines a basis for the
complex extension of the tangent space at every point of the classical phase space Hρ\G. A
polarization provides a separation of the tangent space at each point of this phase space into
canonical space-like and momentum-like subspaces.

Let p denote the Lie algebra of P. According to Woodhouse [28], the subalgebra p ⊂ gc

generates an invariant polarization if it satisfies the conditions:

(i) ρ([A,B]) = 0 for any A,B ∈ p,

(ii) dimR g + dimR hρ = 2 dimC p,

(iii) p is invariant under the adjoint action of Hρ .

The first condition ensures that the polarization is isotropic, i.e. contains no canonically
conjugate observables. The second condition ensures that p is a maximal subalgebra for
which the first condition holds; the polarization is then said to be Lagrangian on Hρ\G. This
condition ensures that p is sufficiently large that a representation of the group P characterizes
an irrep ofG. The final condition ensures that the polarization is well defined onHρ\G. These
conditions extend the definition of a parabolic subalgebra for a semisimple Lie algebra to the
general situation.

As we illustrate with several examples in section 4, the choice of a suitable subgroup
P ⊂ Gc for a coherent state quantization also defines an invariant polarization according to
the above criteria.
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3.4. Coherent state inner products

For a coherent state irrep that belongs to the discrete series, an inner product is defined in the
following standard way. For a given reference state |ϕ〉, let I denote the integral

I =
∫
T (g−1)|ϕ〉〈ϕ|T (g) dv(g) (55)

where dv is a right-invariant measure on G. This integral converges if |ϕ〉 is a normalizable
state vector in an irreducible subspace of T that carries a discrete series representation. The
integral then defines I as a well-defined operator on the Hilbert space. Moreover, it commutes
with the representation T (g′) of any element g′ ∈ G. Hence, by Schur’s lemma, I is a multiple
of the identity on the irreducible subspace containing the vector |ϕ〉. It follows that the space
of coherent state wavefunctions

H = {ψ|ψ(g) = 〈ϕ|T (g)|ψ〉, |ψ〉 ∈ H}, (56)

where H is the Hilbert space for the representation T, has inner product given to within a
convenient norm factor by

(ψ,ψ ′) =
∫
ψ∗(g)ψ ′(g) dv(g). (57)

If the representationχ ofHρ is unitary, the coherent state wavefunctions have the property

ψ∗(hg)ψ ′(hg) = ψ∗(g)ψ ′(g). (58)

Then the integral over the group in equation (57) can be restricted to an integral over the coset
space Hρ\G with a right-invariant measure induced from that on G.

When 〈ϕ| is a functional on a dense subspace HD of H, the integral I may not converge.
However, the corresponding integral over Hρ\G may converge and, if so, it is sufficient to
define an inner product of coherent state wavefunctions in parallel with Mackey’s construction
of inner products for induced representations of semidirect product groups.

Inner products for more general coherent state representations are constructed by K-matrix
methods [33] and the related integral methods of Rowe and Repka [34].

4. Examples

Examples are given in the following to illustrate systematic procedures for carrying out the
prescriptions of geometric quantization within the framework of coherent state representation
theory. The first example, for the nilpotent Heisenberg–Weyl (HW) algebra, serves as a useful
prototype for more general applications. The familiar quantizations of this algebra known
as Schrödinger quantization and the Bargmann–Segal representation [35] are both illustrated.
The second and third examples are prototypes of semisimple and semidirect sum Lie algebras,
respectively. The examples show that coherent state theory provides simple and natural routes
through the (sometimes subtle) methods of geometric quantization. Often there is more than
one path. There may be a choice of polarization (as illustrated by two representations, one real
and one holomorphic, for the HW algebra) and a choice of the functional form of the resulting
Hilbert space (illustrated for SU(2)).

4.1. The nilpotent Heisenberg–Weyl (HW) algebra

A generic unitary representation T of the HW algebra is spanned by Hermitian operators,
{q̂, p̂, Î }, on a Hilbert H with commutation relations

[q̂, p̂] = ih̄Î [q̂, Î ] = 0 [p̂, Î ] = 0. (59)
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The representations of the so-called oscillator group, which contains the Heisenberg–
Weyl group as a normal subgroup, were constructed by Streater [22] using both Mackey and
Kirillov methods.

4.1.1. Schrödinger quantization. Let |0〉 ∈ H denote any normalized state for which

〈0|Î |0〉 = 1 〈0|q̂|0〉 = 〈0|p̂|0〉 = 0. (60)

If elements of the HW group are parametrized

T (g(θ, q, p)) = e− i
h̄
θ Î e− i

h̄
pq̂ e

i
h̄
qp̂ (61)

the group conjugates of {q̂, p̂, Î } are

q̂(g) = T (g)q̂T (g−1) = q̂ + qÎ

p̂(g) = T (g)p̂T (g−1) = p̂ + pÎ

Î (g) = T (g)ÎT (g−1) = Î

(62)

and a classical realization of the HW algebra is given by the functions {Q,P, I} of p and q
with

Q(p, q) = 〈0|q̂(g)|0〉 = q

P(p, q) = 〈0|p̂(g)|0〉 = p

I(p, q) = 〈0|Î (g)|0〉 = 1.

(63)

The Poisson bracket of Q and P , for example, is given by

{Q,P}(p, q) = − i

h̄
〈0|[q̂(g), p̂(g)]|0〉 = I(p, q). (64)

An induced representation of the HW algebra, equivalent to a prequantization, is now
constructed by coherent state techniques as follows. (Note that we employ a different
coordinate chart than used in section 3.2; although equivalent results are obtained in any
chart, the coordinates used here are standard for this example.) Choosing 〈ϕ| = 〈0| to be some
normalized state satisfying equation (60), as above, and factoring out the phases generated by
the identity Î , a state |ψ〉 of a model with the HW algebra as its SGA is assigned a coherent
state wavefunction ψ defined over the classical phase space (the p–q plane) by

ψ(p, q) = 〈0|e− i
h̄
pq̂ e

i
h̄
qp̂|ψ〉. (65)

The corresponding coherent state representation 	 of an element Â of the Heisenberg–Weyl
algebra, defined generally by

[	(Â)ψ](p, q) = 〈0|e− i
h̄
pq̂ e

i
h̄
qp̂Â|ψ〉

= 〈0|e− i
h̄
pq̂
(
Â +

i

h̄
q[p̂, Â]

)
e

i
h̄
qp̂|ψ〉 (66)

is then the induced representation

	(q̂) = q + ih̄
∂

∂p
	(p̂) = −ih̄

∂

∂q
	(Î ) = 1. (67)

This representation is obtained in geometric quantization starting with the Poisson bracket
of any two functions A and B in the HW algebra in the form

{A,B} = ∂A
∂q

∂B
∂p

− ∂A
∂p

∂B
∂q
. (68)
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Corresponding vector fields are then defined by

XQ = ∂

∂p
XP = − ∂

∂q
XI = 0 (69)

and a symplectic form, for which

{A,B} = ω(XA,XB) (70)

is given by

ω = dq ∧ dp. (71)

This two-form is exact and expressible as the exterior derivative ω = dθ of a variety of one-
forms. For the (p, q) coordinates defined by setting T (g(p, q)) = e− i

h̄
pq̂ e

i
h̄
qp̂, cf equation

(65), the identities

q̂T (g(p, q)) = ih̄
∂

∂p
T (g(p, q))

p̂T (g(p, q)) =
(

−ih̄
∂

∂q
+ p

)
T (g(p, q))

(72)

imply that an appropriate one-form is

θ = −p dq. (73)

Prequantization of the {Q,P, I} functions then gives

	(Q) = Q + ih̄XQ − θ(XQ) = q + ih̄
∂

∂p

	(P) = P + ih̄XP − θ(XP) = −ih̄
∂

∂q
(74)

	(I) = I −XI − θ(XI) = 1

which is identical to the induced representation of equation (67).
To obtain an irreducible representation, a functional 〈ϕ| on a suitably-defined dense

subspace HD ⊂ H may be chosen such that

〈ϕ|q̂|ψ〉 = 0 ∀|ψ〉 ∈ HD. (75)

This choice corresponds to choosing the real polarization p spanned by the operators q̂
and Î . Note that the state |ϕ〉 is not a normalizable state vector of the Hilbert space of square-
integrable functions on the HW group. Nevertheless, the bra vector 〈ϕ| is a well-defined
functional on HD . The coherent state wavefunctions, for states in this dense subspace, are
then the p-independent functions, given by

ψ(q) = 〈ϕ|e i
h̄
qp̂|ψ〉 (76)

and the coherent state representation of the algebra reduces to the familiar irreducible
Schrödinger representation

	(q̂) = q 	(p̂) = −ih̄
∂

∂q
	(Î ) = 1. (77)

4.1.2. The Bargmann–Segal representation. To obtain a classical Bargmann–Segal
representation of the HW algebra, choose any normalized state |0〉 in the Hilbert space such
that

〈0|â†|0〉 = 〈0|â|0〉 = 0 〈0|Î |0〉 = 1 (78)
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where

â† = 1√
2

(
q̂ − i

h̄
p̂
)

â = 1√
2

(
q̂ +

i

h̄
p̂
)
. (79)

With group elements parametrized by the factorization

T (g(z, z∗, ϕ)) = e(iϕ− 1
2 |z|2)Î e−z∗ â† ezâ (80)

the group conjugates of {â†, â, Î } are given by

â†(z, z∗) = T (g)â†T (g−1) = â† + zÎ

â(z, z∗) = T (g)âT (g−1) = â + z∗Î (81)

Î (z, z∗) = T (g)ÎT (g−1) = Î

and the corresponding conjugates of q̂ and p̂ are

q̂(z, z∗) = q̂ +
1√
2
(z + z∗)Î

(82)
p̂(z, z∗) = p̂ +

ih̄√
2
(z − z∗)Î .

This parameterization leads to a classical realization of the HW algebra in which {q̂, p̂, Î }
map to functions {Q,P, I} of z and z∗ defined by

Q(z, z∗) = 〈0|q̂(z, z∗)|0〉 = 1√
2
(z + z∗)

P(z, z∗) = 〈0|p̂(z, z∗)|0〉 = ih̄√
2
(z− z∗) (83)

I(z, z) = 〈0|Î (z, z∗)|0〉 = 1

and with Poisson bracket given, for example, by

{Q,P}(z, z∗) = − i

h̄
〈0|[q̂(z, z∗), p̂(z, z∗)]|0〉 = I(z, z∗). (84)

With 〈ϕ| = 〈0|, a state |ψ〉 is now assigned a coherent state wavefunctionψ defined over
the complex z plane by

ψ(z, z∗) = 〈ϕ|e−z∗ â† ezâ|ψ〉. (85)

The corresponding coherent state representation 	 of an element Â of the Heisenberg–Weyl
algebra, defined generally by

[	(Â)ψ](x) = 〈ϕ|e−z∗ â† ezâÂ|ψ〉 = 〈ϕ|e−z∗ â†(Â + z[â, Â]) ezâ|ψ〉 (86)

then gives the prequantization

	(a) = ∂

∂z
	(a†) = z− ∂

∂z∗
	(I) = 1. (87)

To obtain an irreducible representation, define |ϕ〉 to be the vacuum state for which

â|ϕ〉 = 0 Î |ϕ〉 = |ϕ〉. (88)

This state satisfies the equation

〈ϕ|Î |ψ〉 = 〈ϕ|ψ〉 〈ϕ|â†|ψ〉 = 0 (89)
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and defines a complex polarization p ⊂ gc spanned by the operators â† and Î . The coherent
state wavefunctions are now the holomorphic functions, given for |ψ〉 in the dense subspace
of H generated by the action of finite powers of a† on the vacuum state by

ψ(z) = 〈ϕ|ezâ|ψ〉. (90)

The corresponding coherent state representation of the HW algebra is now the well-known
Bargmann–Segal representation

	(a) = ∂

∂z
	(a†) = z 	(I) = 1 (91)

which is known to be irreducible.
The Hilbert H space for this irrep is inferred in coherent state theory from the requirement

that ∂/∂z should be the Hermitian adjoint of z for a unitary representation. Thus, H has an
orthonormal basis {ψn; n = 0, 1, 2, . . .} with

ψn(z) = zn√
n!

(92)

and inner product

(ψm,ψn) = 1√
m!n!

(
∂m

∂zm
zn
)∣∣∣∣

z=0

= δmn. (93)

From the observation that∫ (
∂ψ

∂z

)∗
e−zz∗ψ ′(z) dz dz∗ =

∫
ψ(z)∗ e−zz∗zψ ′(z) dz dz∗ (94)

it is also determined that H is the space of holomorphic functions with norm

(ψ,ψ) = 1

2π

∫
|ψ(z)|2 e−zz∗ dz dz∗. (95)

This Hilbert space H is the well-known Bargmann–Segal space of entire analytic functions.

4.2. The semisimple su(2) algebra

Representations of the groups SO(3) and SO(2, 1) were constructed within the framework of
Kirillov’s orbit method by Dunne [23]. We consider here only su(2) (isomorphic to so(3)) as
an example of a semisimple Lie algebra.

Suppose the regular representation T of the su(2) algebra is spanned by three components
of angular momentum (Ŝ1, Ŝ2, Ŝ3) with commutation relations

[Ŝi, Ŝj ] = iŜk i, j, k cyclic (96)

acting on L2(SU(2)).
Elements of the SU(2) group can be parametrized in many ways. The standard

parameterization, in terms of Euler angles,

T (g(α, β, γ )) = e−iαŜ3 e−iβŜ2 e−iγ Ŝ3 (97)

leads to a classical realization of the su(2) Lie algebra and a prequantization. However,
with this parameterization, it is not so easy to identify a polarization and an irreducible
subrepresentation. Parameterizations that lead naturally to irreducible quantizations are
defined as follows.
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4.2.1. Representation by functions on a circle. Because the Lie algebras su(2) and sl(2,R)
are both real forms of sl(2,C), it follows that the irreps of su(2) are defined by corresponding
finite-dimensional irreps of sl(2,R). Thus, it is useful to regard the operators {Ŝ1, iŜ2, Ŝ3} as
spanning a finite-dimensional irrep of sl(2,R) and use the Iwasawa factorization to represent
an element g ∈ SL(2,R) in the parametrized form

T (g(y, z, θ)) = eyŜ3 ezŜ− eiθ Ŝ2 (98)

where Ŝ− = Ŝ1 − iŜ2. Let |0〉 ∈ L2(SU(2)) be a normalized state such that

〈0|Ŝ3|0〉 = M 〈0|Ŝ1|0〉 = 〈0|Ŝ2|0〉 = 0 (99)

where M is real. We then obtain the classical realization of the su(2) algebra, Ŝi → Si , as
functions on a cylinder

S1(z, θ) = 〈0|ezŜ− eiθ Ŝ2 Ŝ1 e−iθ Ŝ2 e−zŜ− |0〉 = M(sin θ − z cos θ)

S2(z, θ) = 〈0|ezŜ− eiθ Ŝ2 Ŝ2 e−iθ Ŝ2 e−zŜ− |0〉 = iMz

S3(z, θ) = 〈0|ezŜ− eiθ Ŝ2 Ŝ3 e−iθ Ŝ2 e−zŜ− |0〉 = M(cos θ + z sin θ).

(100)

The Poisson bracket of these functions

{Si ,Sj }(z, θ) = −i〈0|ezŜ− eiθ Ŝ2 [Ŝi , Ŝj ] e−iθ Ŝ2 e−zŜ− |0〉 (101)

gives

{Si ,Sj } = Sk i, j, k cyclic. (102)

It can also be expressed in the classical form

{Si ,Sj }(z, θ) = i

M

(
∂Si
∂z

∂Sj
∂θ

− ∂Si
∂θ

∂Sj
∂z

)
. (103)

The quantizability condition is that 2M should be an integer. Prequantization is then
given by choosing |ϕ〉 to be an eigenstate of Ŝ3 with eigenvalue M (a half integer) so that

〈ϕ|eiσ Ŝ3 ezŜ− eiθ Ŝ2 |ψ〉 = eiMσ 〈ϕ|ezŜ− eiθ Ŝ2 |ψ〉. (104)

Coherent state wavefunctions for the induced representation are now defined by

ψ(z, θ) = 〈ϕ|ezŜ− eiθ Ŝ2 |ψ〉 |ψ〉 ∈ L2(SU(2)) (105)

and the corresponding representation of the infinitesimal generators of SU(2) is defined in the
usual way by

[	(Si)ψ](z, θ) = 〈ϕ|ezŜ− eiθ Ŝ2 Ŝi |ψ〉. (106)

This equation gives 	(S2) immediately as

	(S2) = −i
∂

∂θ
. (107)

From

[	(S1)ψ](z, θ) = 〈ϕ|ezŜ− eiθ Ŝ2 Ŝ1|ψ〉
= 〈ϕ|ezŜ− [Ŝ1 cos θ + Ŝ3 sin θ ] eiθ Ŝ2 |ψ〉 (108)

[	(S3)ψ](z, θ) = 〈ϕ|ezŜ− [Ŝ3 cos θ − Ŝ1 sin θ ] eiθ Ŝ2 |ψ〉 (109)

and the observation that

ezŜ− Ŝ1 = ezŜ−(Ŝ− + iŜ2) ezŜ− Ŝ3 = [Ŝ3 + zŜ−]ezŜ− (110)
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it follows that

	(S1) = sin θ

[
M + z

∂

∂z

]
+ cos θ

[
∂

∂z
+
∂

∂θ

]

	(S3) = cos θ

[
M + z

∂

∂z

]
− sin θ

[
∂

∂z
+
∂

∂θ

]
.

(111)

An irreducible subrepresentation results if |ϕ〉 is chosen to be a highest weight state, so
that 2M is a positive integer (which we now call 2S), and satisfies the equations

Ŝ3|ϕ〉 = S|ϕ〉 Ŝ+|ϕ〉 = 0 (112)

where

Ŝ+ = Ŝ1 + iŜ2 (113)

is the adjoint of Ŝ−. The coherent state wavefunctions then become independent of z,

ψ(z, θ) = 〈ϕ|ezŜ− eiθ Ŝ2 |ψ〉 = 〈ϕ|eiθ Ŝ2 |ψ〉 (114)

and are seen to be functions on the circle. The coherent state representation reduces to

	(Ŝ2) = −i
∂

∂θ

	(Ŝ1) = S sin θ + cos θ
∂

∂θ

	(Ŝ3) = S cos θ − sin θ
∂

∂θ

(115)

which is that of an su(2) irrep of angular momentum S. It corresponds to the quantization
obtained by choosing the polarization p to be the Borel subalgebra of su(2)c spanned by S3

and S−.
The inner product and Hilbert space for this irrep are inferred in coherent state theory from

the requirement that, for a unitary representation, 	(S+) should be the Hermitian adjoint of
	(S−) and vice versa. Thus, an orthonormal basis H is constructed by the systematic methods
of K-matrix theory [33]. The inner product is also given in integral form by the methods of
[34].

4.2.2. Representation by holomorphic functions. Equivalent holomorphic representations
are obtained by choosing the same polarization but a different factorization of an SL(2,R)
group element

T (g(x, y, z)) = exŜ3 eyŜ− ezŜ+ . (116)

Then, for |0〉 again such that equation (99) is satisfied, we obtain a classical realization of the
su(2) algebra, Ŝi → Si , with

S1(y, z) = 〈0|eyŜ− ezŜ+ Ŝ1 e−zŜ+ e−yŜ− |0〉 = M(z− y + yz2)

S2(y, z) = 〈0|eyŜ− ezŜ+ Ŝ2 e−zŜ+ e−yŜ− |0〉 = iM(z + y + yz2)

S3(y, z) = 〈0|eyŜ− ezŜ+ Ŝ3 e−zŜ+ e−yŜ− |0〉 = M(1 + 2yz).

(117)

The Poisson bracket of these functions

{Si ,Sj }(y, z) = −i〈0|eyŜ− ezŜ+ [Ŝi , Ŝj ] e−zŜ+ e−yŜ− |0〉 (118)

again gives

{Si ,Sj } = Sk i, j, k cyclic (119)
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and is now expressed in the classical form

{Si ,Sj }(z, θ) = i

2M

(
∂Si
∂y

∂Sj
∂z

− ∂Si
∂z

∂Sj
∂y

)
. (120)

With |ϕ〉 an eigenstate of Ŝ3 of eigenvalue M (with 2M an integer), coherent state
wavefunctions are given by

ψ(y, z) = 〈ϕ|eyŜ− ezŜ+ |ψ〉 |ψ〉 ∈ L2(SU(2)) (121)

and the corresponding representation of the infinitesimal generators of SU(2) is defined in the
usual way by

[	(Si)ψ](y, z) = 〈ϕ|eyŜ− ezŜ+ Ŝi|ψ〉. (122)

One finds that

	(S+) = ∂

∂z

	(S−) = ∂

∂y
+ z

(
2M + 2y

∂

∂y
− z

∂

∂z

)

	(S3) = M + y
∂

∂y
− z

∂

∂z
.

(123)

This representation is also obtained by prequantization of the above classical realization.
An irreducible subrepresentation is again obtained by requiring |ϕ〉 to be a highest weight

state satisfying equation (112). The coherent state wavefunctions then become independent
of y,

ψ(z) = 〈ϕ|eyŜ− ezŜ+ |ψ〉 = 〈ϕ|ezŜ+ |ψ〉 (124)

and holomorphic functions of the variable z. The coherent state representation reduces to

	(S+) = ∂

∂z
	(S−) = z

(
2S − z

∂

∂z

)
	(S3) = S − z

∂

∂z
(125)

which is that of an su(2) irrep of angular momentum S. It corresponds to the quantization
obtained by choosing the polarization p to be the Borel subalgebra of su(2)c spanned by S3

and S−.
Note that the last two examples involve the same polarization, but give different

realizations.

4.3. The semidirect product Euclidean group in two dimensions

The Euclidean group in two dimensions E(2) ∼ [R2]SO(2) can be realized as the group
of translations and rotations in a real two-dimensional Euclidean space. Its infinitesimal
generators are two components (px, py) of a momentum vector and an angular momentum
L. Alternatively, it can be realized as the dynamical group of a two-dimensional rotor, e.g., a
particle moving in a circle. A set of observables for such a rotor is given by a pair of (x, y)
coordinate functions and again an angular momentum. Let T be the regular E(2) representation,
with observables in the algebra satisfying the commutation relations

[x̂, ŷ] = 0 [L̂, x̂] = ih̄ŷ [L̂, ŷ] = −ih̄x̂. (126)

Group elements in E(2) can be parametrized as
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T (g(α, β, θ)) = e− i
h̄
(αx̂+βŷ) e− i

h̄
θ L̂. (127)

Let |0〉 be a state in the Hilbert space of T having expectation values

〈0|x̂|0〉 = 0 〈0|ŷ|0〉 = r 〈0|L̂|0〉 = 0. (128)

This state defines a classical realization of the E(2) Lie algebra in which (x, y, L) map to
β-independent functions (X ,Y,L) over g(α, β, θ) defined by

X (α, θ) = 〈0|e− i
h̄
(αx̂+βŷ) e− i

h̄
θ L̂x̂ e

i
h̄
θ L̂ e

i
h̄
(αx̂+βŷ)|0〉 = r sin θ

Y(α, θ) = 〈0|e− i
h̄
(αx̂+βŷ) e− i

h̄
θ L̂ŷ e

i
h̄
θ L̂ e

i
h̄
(αx̂+βŷ)|0〉 = r cos θ

L(α, θ) = 〈0|e− i
h̄
(αx̂+βŷ) e− i

h̄
θ L̂L̂ e

i
h̄
θ L̂ e

i
h̄
(αx̂+βŷ)|0〉 = −αr

(129)

and for which the Poisson bracket is given by

{A,B}(α, θ) = 1

r

(
∂A
∂θ

∂B
∂α

− ∂A
∂α

∂B
∂θ

)
. (130)

Now let 〈ϕ| be a functional on a dense subspace HD of the Hilbert space for the
representation T such that

〈ϕ|T (g(α, β, θ))|ψ〉 = e− i
h̄
βr〈ϕ|e− i

h̄
αx̂ e− i

h̄
θ L̂|ψ〉. (131)

The space of coherent state wavefunctions, defined for each |ψ〉 ∈ HD by

ψ(α, θ) = 〈ϕ|e− i
h̄
αx̂ e− i

h̄
θ L̂|ψ〉 (132)

is then isomorphic to the space of square-integrable functions on a cylinder with respect to the
standard dα dθ measure. This space carries a reducible representation of E(2) for which

	(x) = r sin θ + ih̄ cos θ
∂

∂α

	(y) = r cos θ − ih̄ sin θ
∂

∂α

	(L) = ih̄
∂

∂θ
.

(133)

This representation is the same as that obtained for E(2) by prequantization of the rotor.
To obtain an irreducible representation, one must choose a subalgebra that in geometric

quantization defines a polarization. A suitable subalgebra is the Lie algebra of the normal
subgroup R

2 ⊂ E(2). Let 〈ϕ| be a functional on a dense subspace of the Hilbert space of T
such that

〈ϕ|T (α, β, θ)|ψ〉 = e− i
h̄
rβ〈ϕ|e− i

h̄
θ L̂|ψ〉. (134)

The space of coherent state wavefunctions, defined for each |ψ〉 ∈ HD by

ψ(θ) = 〈ϕ|e− i
h̄
θ L̂|ψ〉 (135)

is now L2(SO(2)), the space of square-integrable functions on the circle with respect to the
standard dθ measure. The coherent state representation of the E(2) Lie algebra is now
irreducible on L2(SO(2)) and given by

	(x) = r sin θ 	(y) = r cos θ 	(L) = ih̄
∂

∂θ
. (136)
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5. Concluding remarks

The theory of geometric quantization provides a sophisticated perspective on the underlying
principles for quantization of a classical model. On the other hand, the theory of induced
representations is one of the most versatile procedures for constructing representations of Lie
groups and Lie algebras. As emphasized by researchers in both fields, the two theories have
much in common and both contribute substantially to the description of quantum systems.
Unfortunately, because of their formidable mathematical expressions, they are not readily
accessible to most physicists. Thus, it is useful to know that both theories can be expressed in
the language of coherent state representations, a language that has been specifically developed
to provide practical methods for performing algebraic calculations in physics.

It has been shown in this paper that the coherent state construction yields the three types
of representations of the SGA of an algebraic model involved in a quantization scheme:
classical realizations, prequantizations and full quantizations (unitary irreps). Examples
have also been given to illustrate how the coherent state approach provides an intuitive
path through the techniques of geometric quantization for algebraic models. Thus, we are
optimistic that the coherent state methods presented here will serve to make the methods of
induced representations and geometric quantization accessible to a wider community. By
expressing the methods of geometric quantization in the language of coherent state theory, we
are also optimistic that many techniques developed for the practical application of induced
representation theory to the solution of physical problems will be equally useful for practical
applications of the methods of geometric quantization.

It is interesting that the classical representations given by coherent state methods
automatically take into account the inherent limitations, imposed by the uncertainty principle,
on an experimentalist’s ability to measure an observable precisely.

In the conventional interpretation of quantum mechanics, the expectation X = 〈ψ|X̂|ψ〉
of an observable is identified with the mean value of many (precise) measurements of the value
of the observable when the system is in a state |ψ〉. Thus, the distribution of experimental
values, using an ideal measurement in which the only limitations on accuracy are quantum
mechanical, is given by the variance

σ 2(X ) = 〈ψ|(X̂ − X )2|ψ〉. (137)

It is remarkable then that the mean expectation values of the observables of an SGA define
functions on a coadjoint orbit which are precisely those of a classical representation.

It is also noted that a given unitary irrep of an SGA can give rise to many classical
realizations. For example, if a freely rotating object had squared angular momentum given
by L(L + 1) in a unitary SO(3) irrep, then the corresponding classical value given by

∑
k L2

k

with Lk = 〈ψ|L̂k |ψ〉 can have values ranging from zero to L2. The maximum value of L2

would be obtained when |ψ〉 is a minimum uncertainty (e.g. a highest weight) state. If an
experimentalist could put the object into such a minimal uncertainty state, then he/she would
obtain an integer value for L and have determined the quantal state of the rotor precisely.
However, in a practical situation, the uncertainties in a given experimental situation inevitably
exceed the minimal uncertainties permitted by quantum mechanics.

It is now known that scalar coherent theory has a natural generalization to a vector coherent
theory [18] in which an irrep of a Lie algebra is induced from a multidimensional irrep of a
subalgebra. In a sequel to this paper we shall show that VCS theory can also be expressed in
the language of geometric quantization and that it corresponds to the quantization of a model
with intrinsic degrees of freedom.



5620 S D Bartlett et al

Acknowledgments

We thank C Bahri for useful discussions. We are also indebted to G Rosensteel and the
referees for bringing important references to our attention. SDB acknowledges the support of
a Macquarie University Research Fellowship. This paper was supported in part by NSERC of
Canada.

Appendix A. The covariant derivative and gauge potential

If A is a classical representation of an element A ∈ g as a function on Oρ = Hρ\G then the
corresponding Hamiltonian vector fieldXA on Oρ is defined to operate on a function f on Oρ

such that XAf is equal to the Poisson bracket {A, f }. This requirement means that XA must
satisfy

[XAf ](g) =
∑
µν

∂µA(g) ωµν ∂νf (g) =
∑
ν

Aν(g) ∂νB(g), (A.1)

where Aν(g) is a coefficient in the expansion

A(g) ≡ Adg(A) =
∑
i

Ai(g)Ai +
∑
ν

Aν(g)Aν (A.2)

and ∂νf is defined by

∂νf (g) = ∂

∂xν
f
(
e− i

h̄

∑
α x

αAαg
)∣∣∣
x=0
. (A.3)

Claim. Let A be a classical representation of an elementA ∈ g as a function on Oρ = Hρ\G
andXA the corresponding Hamiltonian vector field on Oρ . Then the covariant derivative ∇XA
(cf equation (48)) acts on a coherent state wavefunction by

[∇XAψ](g) =
∑
ν

Aν(g)
(
∂ν +

i

h̄
ρ(Aν)

)
ψ(g), (A.4)

It is expressible in the form

∇XA = XA +
i

h̄
θ(XA), (A.5)

where θ is a symplectic potential (one-form) for Oρ .

Before proving this claim, we consider first the expression of the vector field XA as a
derivation in terms of local coordinates by means of the following observation.

Observation. If X(x) = − i
h̄

∑
µ x

µAµ, then

ih̄
∂eX(x)

∂xν
= Aν(x)eX(x) = eX(x)Aν(−x), (A.6)

and

ih̄
∂e−X(x)

∂xν
= −Aν(−x)e−X(x) = −e−X(x)Aν(x), (A.7)

where

Aν(x) = Aν +
1

2!
[X(x),Aν] +

1

3!
[X(x), [X(x),Aν]] + · · · (A.8)
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Proof. The first identity of equation (A.6) follows from the observation that
∂

∂xν

(
e−X(x)eX(x)

)
= 0, (A.9)

and hence that

ih̄
∂

∂xν
eX(x) = ih̄

( ∂

∂xν
− eX(x)

∂

∂xν
e−X(x)

)
eX(x). (A.10)

The second identity of equation (A.6) is obtained directly from
∂

∂xν
eX(x) = eX(x)

(
e−X(x) ∂

∂xν
eX(x)

)
. (A.11)

Equation (A.7) is obtained similarly. �

If g(x) = eX(x)g then it follows from the observation that to leading order in δx,

g(x + δx) = exp
[

− i

h̄

∑
µ

δxνAν(x)
]
g(x). (A.12)

Hence, with the expansion

Aν(x) =
∑
µ

�µ
ν (x)Aµ +

∑
i

λiν (x)Ai, (A.13)

the observation leads to the expression for the derivatives of a function f on G
∂

∂xν
f (g(x)) =

∑
µ

�µ
ν (x) ∂µf (g(x)) +

∑
i

λiν (x) ∂if (g(x)). (A.14)

However, when f = B (a classical observable in the SGA), the second term on the right
is zero, due to the fact that B(g) satisfies the equations B(hg) = B(g), and hence

∂i B(g) = 0. (A.15)

Thus, we obtain

∂νB(g(x)) =
∑
µ

�
µ

ν (x)
∂

∂xµ
B(g(x)) (A.16)

and

[XAB](g(x)) =
∑
µν

Aν(g(x))�
µ

ν (x)
∂

∂xµ
B(g(x)), (A.17)

where�(x) is the inverse of the matrix�(x).

Proof of the Claim. The action of XA, defined by equation (A.17) can be extended to
coherent state wavefunctions. However, while the action (A.17) of XA on functions over
Oρ ∼ Hρ\G is covariant, the action on coherent state wavefunctions is not covariant; these
wavefunctions are not defined on Oρ but have extra phase factors and, as a consequence,
they are not gauge invariant. In particular, ∂iψ(g) is not generally zero. Thus, in evaluating
the covariant derivative, defined by equation (A.4), both terms on the right hand side of
equation (A.14) must be included to give

∂νψ(g(x)) =
∑
µ

�
µ

ν (x)

(
∂

∂xµ
+

i

h̄

∑
i

λiµρ(Ai)

)
ψ(g(x)). (A.18)

The covariant derivative of ψ at g(x) is then

[∇XAψ](g(x)) =
∑
ν

Aν(g(x))�
µ

ν (x)

(
∂

∂xµ
+

i

h̄
θµ(x)

)
ψ(g(x)), (A.19)
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where

θµ(x) =
∑
ν

�ν
µ(x)ρ(Aν) +

∑
i

λiµ(x)ρ(Ai) = ρ(Aµ(x)). (A.20)

Thus, with the interpretation of θν as a component of a one-form θg(x) = ∑
ν θν(x) dxν , so that

θν(x) = θg(x)(∂/∂x
ν), (A.21)

the covariant derivative is expressed ∇XA = XA + i
h̄
θ(XA) as claimed.

It remains to be shown that the one-form θ is a symplectic potential, i.e., that the symplectic
form on Oρ is given by

ωg(x) = dθg(x) =
∑
µν

∂θν(x)

∂xµ
dxµ ∧ dxν. (A.22)

First observe, from equation (A.20), that

∂θν(x)

∂xµ
= ρ

(
∂Aν(x)

∂xµ

)
. (A.23)

Now, with Aν(x) written in the form

Aν(x) = −eX(x)ih̄
∂

∂xν
e−X(x), (A.24)

it follows, from multiple use of the observation, that

∂Aν(x)

∂xµ
= − i

h̄
[Aµ(x),Aν(x)]. (A.25)

Thus, we obtain

∂θν(x)

∂xµ
= − i

h̄
ρ([Aµ(x),Aν(x)]), (A.26)

which from the definition of Aν(x) (equation (A.13)) and ωµν (equation (28)) gives

∂θν(x)

∂xµ
=
∑
µ′,ν′

�µ′
µ (x)ωµ′,ν′�ν′

ν (x). (A.27)

Therefore, if ω is the two-form defined by equation (A.22), then for the vector fields defined
by equation (A.17), we obtain

ωg(x)(XA,XB) =
∑
µν

Aµ(g(x)) ωµνB
ν(g(x)), (A.28)

which is identical to the expression in equation (29) for the Poisson bracket {A,B}(g(x)).
This result confirms that the one-form θ is indeed a symplectic potential and completes the
proof of the claim. �
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